Deep Fusion Clustering Network

نویسندگان

چکیده

Deep clustering is a fundamental yet challenging task for data analysis. Recently we witness strong tendency of combining autoencoder and graph neural networks to exploit structure information performance enhancement. However, observe that existing literature 1) lacks dynamic fusion mechanism selectively integrate refine the node attributes consensus representation learning; 2) fails extract from both sides robust target distribution (i.e., “groundtruth” soft labels) generation. To tackle above issues, propose Fusion Clustering Network (DFCN). Specifically, in our network, an interdependency learning-based Structure Attribute Information (SAIF) module proposed explicitly merge representations learned by learning. Also, reliable generation measure triplet self-supervision strategy, which facilitate cross-modality exploitation, are designed network training. Extensive experiments on six benchmark datasets have demonstrated DFCN consistently outperforms state-of-the-art deep methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Graph Clustering in Social Network

In this paper, we present deep attributes residue graph algorithm (DARG), a novel model for learning deep representations of graph. The algorithm can discover clusters by taking into consideration node relevance. DARG does so by first learns attributes relevance and cluster deep representations of vertices appearing in a graph, unlike existing work, integrates content interactions of the nodes ...

متن کامل

A Segmentation-aware Deep Fusion Network for Compressed Sensing MRI

Compressed sensing MRI is a classic inverse problem in the field of computational imaging, accelerating the MR imaging by measuring less k-space data. The deep neural network models provide the stronger representation ability and faster reconstruction compared with ”shallow” optimization-based methods. However, in the existing deepbased CS-MRI models, the high-level semantic supervision informa...

متن کامل

Deep Sparse Subspace Clustering

In this paper, we present a deep extension of Sparse Subspace Clustering, termed Deep Sparse Subspace Clustering (DSSC). Regularized by the unit sphere distribution assumption for the learned deep features, DSSC can infer a new data affinity matrix by simultaneously satisfying the sparsity principle of SSC and the nonlinearity given by neural networks. One of the appealing advantages brought by...

متن کامل

Deep Spectral Clustering Learning

Clustering is the task of grouping a set of examples so that similar examples are grouped into the same cluster while dissimilar examples are in different clusters. The quality of a clustering depends on two problem-dependent factors which are i) the chosen similarity metric and ii) the data representation. Supervised clustering approaches, which exploit labeled partitioned datasets have thus b...

متن کامل

Deep Clustering using Auto-Clustering Output Layer

In this paper, we propose a novel method to enrich the representation provided to the output layer of feedforward neural networks in the form of an auto-clustering output layer (ACOL) which enables the network to naturally create sub-clusters under the provided main class labels. In addition, a novel regularization term is introduced which allows ACOL to encourage the neural network to reveal i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i11.17198